导数概念(导数概念)

导数的概念及其几何意义不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。如何不用极限概念定义导数在

导数的概念及其几何意义

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

如何不用极限概念定义导数

在点上定义导数,你可以想想速度,你现在学的速度应该是路程除以时间吧,要有路程,有时间才有速度,可是物体在某一时刻的速度是什么呢,是什么意思呢?从数学上说这就是路程对时间的导数。其实那些哲人们就曾经争论过,物体在某一时刻到底是动还是不动的问题,还有所谓“飞矢不动”的说法,理解这一问题可以说是困扰人们由来已久了。要想抛开那些抽象难懂的数学符号,形象而又不失精确的描述在某一点的导数,在我看来是不可能的了。关于数形结合,有人说过“有数无形少直观,有形无数缺精确”,看来在形象直观和精准严密之间是很难两全了,只能两相结合,互为补充。

导数主要有什么概念和意义

导数(derivative)是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则来源于极限的四则运算法则。 导数定义 [1](一)导数第一定义:设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量 △x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量 △y = f(x0 + △x) – f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即 导数第一定义 (二)导数第二定义:设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化 △x ( x – x0 也在该邻域内 ) 时,相应地函数变化 △y = f(x) – f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即 导数第二定义 (三)导函数与导数:如果函数 y = f(x) 在开区间 i 内每一点都可导,就称函数f(x)在区间 i 内可导。这时函数 y = f(x) 对于区间 i 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y = f(x) 的导函数,记作 y’, f'(x), dy/dx, df(x)/dx。导函数简称导数。

导数是什么概念?????

导数是微积分中的重要概念。导数定义为,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。

创业项目群,学习操作 18个小项目,添加 微信:niuben22  备注:小项目

本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 1553299181@qq.com 举报,一经查实,本站将立刻删除。
如若转载,请注明出处:https://www.nhjkw.cn/473.html